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Abstract
The Kramer–Neugebauer limit of their solution of the Ernst equation to give
the Tomimatsu–Sato class of solutions is obtained. This gives insight into
Nakamura’s conjecture.

PACS numbers: 02.10.Yn, 04.20.−q

1. Introduction

Kramer and Neugebauer [1] have indicated how it may be possible to obtain the Tomimatsu–
Sato [2] family of solutions from their solution of the Ernst equation by a limiting process.
However, the form of their solution makes the carrying out of this procedure in the general
case an awesome prospect. By using an equivalent form [3] of their solution and by replacing
certain sums by contour integrals, we show that the limit is easily effected. When this is
achieved, we arrive at a form of solution similar to that conjectured by Nakamura [4, 5].

2. The Kramer–Neugebauer limit

Let

En = (
λ(n)

rs

)
n×n

(2.1)

En−1 = (
λ(n)

rs

)
(n−1)×(n−1)

(2.2)

where

λ(n)
rs =

2n∑
κ=1

(z + cκ)
r+s−2 eiθκF (cκ)

τκ

(2.3)

F(cκ) =
√

ρ2 + (z + cκ)2 (2.4)

τκ =
2n∏
t=1
t �=κ

(cκ − ct ) (2.5)
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then the Ernst’s potential function ξn is given by [3] (p 301, 6.10.61)

ξn =
(

2

ρ

)2n−1

V2n(c)
Pn−1

Pn

(2.6)

= det En−1

det En

([3], p 297, 6.10.33; p 300, 6.10.56) (2.7)

choosing

θ2κ−1 = θ θ2κ = π − θ 1 � κ � n

λ(n)
rs = υ(1)

rs eiθ − υ(2)
rs e−iθ (2.8)

υ(1)
rs =

n∑
κ=1

(z + c2κ−1)
r+s−2F(c2κ−1)

τ2κ−1
(2.9)

υ(2)
rs =

n∑
κ=1

(z + c2κ)
r+s−2F(c2κ)

τ2κ

. (2.10)

It is now required to put c2κ−1 = 1, c2κ = −1 for 1 � κ � n. However, since this
would make the τ zero (except when n = 1), it would be necessary to take limits. This can be
avoided by noting that the sums on the right-hand sides of (2.9) and (2.10) can be written as
contour integrals, using Cauchy’s theorem,

υ(α)
rs = 1

2π i

∫
Cα

(z + ω)r+s−2F(ω)∏2n
κ=1(ω − cκ)

dω (2.11)

F(ω) =
√

ρ2 + (ω + z)2 α = 1, 2. (2.12)

Where the contour C1 contains the poles ω = c2k−1 but not the poles ω = c2κ , and C2

contains poles ω = c2κ but not the poles ω = c2κ−1 for κ = 1, 2, 3, . . . , n.
Both contours exclude the branch points ω = −z ± iρ of F(ω).
We can now put c2κ−1 = 1, c2κ = −1, 1 � κ � n to give

υ(α)
rs = 1

2π i

∫
Cα

(z + ω)r+s−2F(ω)

(ω + 1)n(ω − 1)n
dω (2.13)

C1 now contains the pole at ω = 1, but not the pole at ω = −1, and C2 contains ω = −1
but not the pole at ω = 1. Both C1 and C2 exclude the branch points of F(ω). It is shown in
appendix A.1 that we can rewrite ξn in the form

ξn = D
(n)
11

Dn

(2.14)

Dn = |drs |n (2.15)

D
(n)
11 = cofactor of d11 in D11 (2.16)

drs = pγ −
rs + iqγ +

rs (2.17)

γ −
rs = γ (1)

rs − γ (2)
rs (2.18)

γ +
rs = γ (1)

rs + γ (2)
rs (2.19)

γ (α)
rs = 1

2π i

∫
Cα

F (ω)

(ω − 1)r (ω + 1)s
dω (2.20)

α = 1, 2 (2.21)

p2 + q2 = 1. (2.22)
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3. Nakamura’s conjecture

If we change from coordinates ρ, z to x, y defined by

ρ =
√

(x2 − 1)(1 − y2) (3.1)

z = xy (3.2)

then Nakamura’s conjecture is

ξn = U
(n)
11

Un

(3.3)

Un = |urs |n (3.4)

U(11)
n = cofactor of u11 in Un (3.5)

urs = Lr−1
+ Ls−1

− φ (3.6)

L± = (1 − x2)
∂

∂x
± (1 − y2)

∂

∂y
(3.7)

φ = px + iqy (3.8)

p2 + q2 = 1. (3.9)

Let

fm = θmx m � 1 θ = (1 − x2)
d

dx
(3.10)

= x m = 0. (3.11)

Then

L−φ = pf1(x) − iqf1(y) L2
−φ = pf2(x) + iqf2(y).

Generally then Ls−1
− = pfs−1(x) + iq(−1)s−1fs−1(y)

∴ urs = Lr−1
+ Ls−1

− φ = pfr+s−2(x) + iq(−1)s−1fr+s−2(y). (3.12)

It is shown in appendix A.2 for n = 1, 2, 3 that our ξn agrees with (3.3) and (3.12),
thus proving Nakamura’s conjecture for n = 1, 2, 3. It is also shown in appendix A.3 that if
Nakamura’s conjecture is correct then it satisfies the necessary and sufficient conditions for it
to be the Tomimatsu–Sato class of solutions.

In order to prove the conjecture generally it would be necessary to generalize the matrices
A and B of appendix A.2.

Acknowledgment
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MAPLE.
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Appendix

A.1.

Theorem 1. Let X = (xrs), Y = (yrs) and Z = (zrs) be invertible square matrices of order n.
Then if W = XYZ

yrs =
n∑

κ=1

n∑
m=1

xκrω
κmzsm

where

yrs = Yrs

|Y | ωrs = Wrs

|W |
Yrs = cofactor of yrs in Y

Wrs = cofactor of ωrs in W.

In particular if

(a) xrr = 1 xrs = 0 r < s

zrr = 1 zrs = 0 s < r

then

Ynn = Wnn

(b) xr1 = δ1r z1s = δ1s

(δrs = 1 r = s δrs = 0 r �= s)

then

y11 = ω11.

Proof. Since

W = XYZ

taking the inverse

W−1 = Z−1Y−1X−1

∴ Y−1 = ZW−1X

∴ (Y−1)T = XT (W−1)T ZT

∴ yrs =
n∑

κ=1

n∑
m=1

xκrω
κmzsm

(a) ynn =
n∑

κ=1

n∑
m=1

xκnω
κmznm

= xnnω
nnznn

= ωnn.

Also

|X| = |Y | = 1 ∴ Ynn = Wnn

(b) y11 =
n∑

κ=1

n∑
m=1

xκ1ω
κmz1m

= x11ω
11z11

= ω11.
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Let

Rn(a) = (αrs(a))n×n

where

αrs(a) =
(

r − 1
s − 1

)
ar−s 1 � s � r

= 0 r < s.

Then

det En = det(Rn(a)En(Rn(b))T )

= det(βrs)n×n

where

βrs =
r∑

κ=1

s∑
m=1

(
r − 1
κ − 1

) (
s − 1
m − 1

)
ar−κbs−m

(
υ(1)

κm eiθ − υ(2)
κm e−iθ

)
.

But
r∑

κ=1

s∑
m=1

(
r − 1
κ − 1

) (
s − 1
m − 1

)
ar−κbs−mυ(α)

κm

= 1

2π i

∫
Cα

(ω + z + a)r−1(ω + z + b)s−1F(ω)

(ω − 1)n(ω + 1)n
dω

= 1

2π i

∫
Cα

F (ω)

(ω − 1)n−r+1(ω + 1)n−s+1
dω

choosing

a = −1 − z b = 1 − z

∴ βrs = d(n−r+1)(n−s+1)

where

drs = γ (1)
rs eiθ − γ (2)

rs e−iθ

γ (α)
rs = 1

2π i

∫
Cα

F (ω)

(ω − 1)r (ω + 1)s
dω

det En = |d(n−r+1)(n−s+1)|n
= |δ(n−r+1)s |n|d(n−r+1)(n−s+1)|n|δ(n−s+1)r |n
= |drs |n
= Dn.

By theorem 1(a)

det(En−1) = |d(n−r+1)(n−s+1)|n−1

= |δ(n−r)s |n−1|d(n−r+1)(n−s+1)|n−1|δ(n−s)r |n−1

= |d(r+1)(s+1)|n−1

= D
(n)
11 .

Now

drs = γ (1)
rs eiθ − γ (2)

rs e−iθ

= γ (1)
rs (cos θ + i sin θ) − γ (2)

rs (cos θ − i sin θ)

= γ −
rs cos θ + i sin θγ +

rs

γ −
rs = γ (1)

rs − γ (2)
rs

γ +
rs = γ (1)

rs + γ (2)
rs .
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Putting p = cos θ, q = sin θ so that p2 + q2 = 1

drs = pγ −
rs + iqγ +

rs . �

A.2.

Using equations (2.14)–(2.22) inclusive and (3.12) gives

d11 = u11 d12 = u12

2(y − x)

d21 = u21

2(x + y)
d22 = u22

4(y2 − x2)
.

In order to obtain these results it is necessary to define

F(1) = x + y and F(−1) = x − y.

∴ ξ1 = U
(1)
11

U1

(
U

(1)
11 = 1

)

ξ2 = U
(2)
11

U2
.

In order to obtain the results for n = 3 it is necessary to transform the determinant D3.
Let D = (drs)3×3 and form the matrix product ADB = (d∗

rs)3×3,

where

A =




1 0 0
0 1 0

0 2(xy+1)

(x+y)
4(x + y)


 B =




1 0 0

0 1 2(−xy+1)

(x−y)

0 0 4(y − x)


 .

This gives

d∗
11 = u11 d∗

12 = u12

2(y − x)
d∗

13 = u13

2(y − x)

d∗
21 = u21

2(x + y)
d∗

22 = u22

4(y2 − x2)
d∗

23 = u23

4(y2 − x2)

d∗
31 = u31

2(x + y)
d∗

32 = u32

4(y2 − x2)
d∗

33 = u33

4(y2 − x2)

∴ by theorem 1(b) we have

ξ3 = D
(3)
11

D3
= D

(3)∗
11

D∗
3

= U
(3)
11

U3
.

A.3.

In the notation of [6] (p 464, equation (8)) the necessary and sufficient condition for a solution
to be a member of the Tomimatsu–Sato class is

FxFy + JxJy = 0 (A.3.1)

where suffix x denotes the partial differentiation with respect to x, and suffix y denotes the
partial differentiation with respect to y. Where ξ = J + iF .

In terms of ξ (A.3.1) reads

ξx ξ̄y + ξ̄xξy = 0 (A.3.2)

where the bar denotes complex conjugate.
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(A.3.2) can be rewritten as

L+ξL+ξ̄ − L−ξL−ξ̄ = 0. (A.3.3)

Theorem 2. Let

ξ = U
(n)
11

Un

(A.3.4)

Un = |urs |n (A.3.5)

U
(1)
11 = cofactor of u11 in Un (A.3.6)

urs = pfr+s−2(x) + iq(−1)s−1fr+s−2(y) (A.3.7)

then

U 2
nL+ξ = Ū 2

nL−ξ̄ . (A.3.8)

Proof. From (A.3.7)

ur(s+2) = u(r+2)s (A.3.9)

ūrs = u(r+1)(s−1) s � 2 (A.3.10)

ūrs = u(r−1)(s+1) r � 2. (A.3.11)

From (A.3.10) or (A.3.11)

Ū
(n)
1n = U

(n)
n1 (A.3.12)

∴ Ū
(n+1)

(n+1)1 = U
(n+1)

1(n+1). (A.3.13)

Now

U 2
nL+ξ = −

n∑
r=1

n∑
s=1

L+(urs)U
(n)
1s U

(n)
r1

= −
n∑

r=1

U
(n)
r1

n∑
s=1

u(r+1)sU
(n)
1s

= −U
(n)
n1

n∑
s=1

u(n+1)sU
(n)
1s

= U
(n)
n1 U

(n+1)

1(n+1)

U 2
nL−ξ = −

n∑
r=1

n∑
s=1

L−(urs)U
(n)
1s U

(n)
r1

= −
n∑

s=1

U
(n)
1s

n∑
r=1

ur(s+1)U
(n)
r1

= −U
(n)
1n

n∑
s=1

ur(n+1)U
(n)
r1

= U
(n)
1n U

(n+1)

(n+1)1.

∴ Ū 2
nL−ξ̄ = Ū

(n)
1n Ū

(n+1)

(n+1)1

= U
(n)
n1 U

(n+1)

1(n+1)

= U 2
nL+ξ.
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From theorem 2

L−ξ̄

L+ξ
= U 2

n

Ū 2
n

.

Taking complex conjugates gives

L−ξ

L+ξ̄
= Ū 2

n

U 2
n

= L+ξ

L−ξ̄
.

∴ L+ξL+ξ̄ − L−ξL−ξ̄ = 0

which is condition (A.3.3). Thus if Nakamura’s conjecture is correct then it is a member of
the Tomimatsu–Sato class. �
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