The Kramer-Neugebauer limit and Nakamura's conjecture

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 372299
(http://iopscience.iop.org/0305-4470/37/6/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.65
The article was downloaded on 02/06/2010 at 19:52

Please note that terms and conditions apply.

The Kramer-Neugebauer limit and Nakamura's conjecture

P Dale
42 Ferguson Road, Oldbury, B68 95B, UK

Received 2 October 2003
Published 28 January 2004
Online at stacks.iop.org/JPhysA/37/2299 (DOI: 10.1088/0305-4470/37/6/022)

Abstract

The Kramer-Neugebauer limit of their solution of the Ernst equation to give the Tomimatsu-Sato class of solutions is obtained. This gives insight into Nakamura's conjecture.

PACS numbers: $02.10 . \mathrm{Yn}, 04.20 .-\mathrm{q}$

1. Introduction

Kramer and Neugebauer [1] have indicated how it may be possible to obtain the TomimatsuSato [2] family of solutions from their solution of the Ernst equation by a limiting process. However, the form of their solution makes the carrying out of this procedure in the general case an awesome prospect. By using an equivalent form [3] of their solution and by replacing certain sums by contour integrals, we show that the limit is easily effected. When this is achieved, we arrive at a form of solution similar to that conjectured by Nakamura [4, 5].

2. The Kramer-Neugebauer limit

Let

$$
\begin{align*}
& E_{n}=\left(\lambda_{r s}^{(n)}\right)_{n \times n} \tag{2.1}\\
& E_{n-1}=\left(\lambda_{r s}^{(n)}\right)_{(n-1) \times(n-1)} \tag{2.2}
\end{align*}
$$

where

$$
\begin{align*}
& \lambda_{r s}^{(n)}=\sum_{\kappa=1}^{2 n} \frac{\left(z+c_{\kappa}\right)^{r+s-2} \mathrm{e}^{\mathrm{i} \theta \kappa} F\left(c_{\kappa}\right)}{\tau_{\kappa}} \tag{2.3}\\
& F\left(c_{\kappa}\right)=\sqrt{\rho^{2}+\left(z+c_{\kappa}\right)^{2}} \tag{2.4}\\
& \tau_{\kappa}=\prod_{\substack{t=1 \\
t \neq \kappa}}^{2 n}\left(c_{\kappa}-c_{t}\right) \tag{2.5}
\end{align*}
$$

then the Ernst's potential function ξ_{n} is given by [3] (p 301, 6.10.61)

$$
\begin{align*}
\xi_{n} & =\left(\frac{2}{\rho}\right)^{2 n-1} V_{2 n}(c) \frac{P_{n-1}}{P_{n}} \tag{2.6}\\
& =\frac{\operatorname{det} E_{n-1}}{\operatorname{det} E_{n}}([3], \mathrm{p} 297,6.10 .33 ; \mathrm{p} 300,6.10 .56) \tag{2.7}
\end{align*}
$$

choosing

$$
\begin{align*}
& \theta_{2 \kappa-1}=\theta \quad \theta_{2 \kappa}=\pi-\theta \quad 1 \leqslant \kappa \leqslant n \\
& \lambda_{r s}^{(n)}=v_{r s}^{(1)} \mathrm{e}^{\mathrm{i} \theta}-v_{r s}^{(2)} \mathrm{e}^{-\mathrm{i} \theta} \tag{2.8}\\
& v_{r s}^{(1)}=\sum_{\kappa=1}^{n} \frac{\left(z+c_{2 \kappa-1}\right)^{r+s-2} F\left(c_{2 \kappa-1}\right)}{\tau_{2 \kappa-1}} \tag{2.9}\\
& v_{r s}^{(2)}=\sum_{\kappa=1}^{n} \frac{\left(z+c_{2 \kappa}\right)^{r+s-2} F\left(c_{2 \kappa}\right)}{\tau_{2 \kappa}} . \tag{2.10}
\end{align*}
$$

It is now required to put $c_{2 \kappa-1}=1, c_{2 \kappa}=-1$ for $1 \leqslant \kappa \leqslant n$. However, since this would make the τ zero (except when $n=1$), it would be necessary to take limits. This can be avoided by noting that the sums on the right-hand sides of (2.9) and (2.10) can be written as contour integrals, using Cauchy's theorem,

$$
\begin{align*}
& v_{r s}^{(\alpha)}=\frac{1}{2 \pi \mathrm{i}} \int_{C_{\alpha}} \frac{(z+\omega)^{r+s-2} F(\omega)}{\prod_{\kappa=1}^{2 n}\left(\omega-c_{\kappa}\right)} \mathrm{d} \omega \tag{2.11}\\
& F(\omega)=\sqrt{\rho^{2}+(\omega+z)^{2}} \quad \alpha=1,2 . \tag{2.12}
\end{align*}
$$

Where the contour C_{1} contains the poles $\omega=c_{2 k-1}$ but not the poles $\omega=c_{2 \kappa}$, and C_{2} contains poles $\omega=c_{2 \kappa}$ but not the poles $\omega=c_{2 \kappa-1}$ for $\kappa=1,2,3, \ldots, n$.
Both contours exclude the branch points $\omega=-z \pm \mathrm{i} \rho$ of $F(\omega)$.
We can now put $c_{2 \kappa-1}=1, c_{2 \kappa}=-1,1 \leqslant \kappa \leqslant n$ to give

$$
\begin{equation*}
v_{r s}^{(\alpha)}=\frac{1}{2 \pi \mathrm{i}} \int_{C_{\alpha}} \frac{(z+\omega)^{r+s-2} F(\omega)}{(\omega+1)^{n}(\omega-1)^{n}} \mathrm{~d} \omega \tag{2.13}
\end{equation*}
$$

C_{1} now contains the pole at $\omega=1$, but not the pole at $\omega=-1$, and C_{2} contains $\omega=-1$ but not the pole at $\omega=1$. Both C_{1} and C_{2} exclude the branch points of $F(\omega)$. It is shown in appendix A. 1 that we can rewrite ξ_{n} in the form

$$
\begin{align*}
& \xi_{n}=\frac{D_{11}^{(n)}}{D_{n}} \tag{2.14}\\
& D_{n}=\left|d_{r s}\right|_{n} \tag{2.15}\\
& D_{11}^{(n)}=\text { cofactor of } d_{11} \text { in } D_{11} \tag{2.16}\\
& d_{r s}=p \gamma_{r s}^{-}+\mathrm{i} q \gamma_{r s}^{+} \tag{2.17}\\
& \gamma_{r s}^{-}=\gamma_{r s}^{(1)}-\gamma_{r s}^{(2)} \tag{2.18}\\
& \gamma_{r s}^{+}=\gamma_{r s}^{(1)}+\gamma_{r s}^{(2)} \tag{2.19}\\
& \gamma_{r s}^{(\alpha)}=\frac{1}{2 \pi \mathrm{i}} \int_{C_{\alpha}} \frac{F(\omega)}{(\omega-1)^{r}(\omega+1)^{s}} \mathrm{~d} \omega \tag{2.20}\\
& \alpha=1,2 \tag{2.21}\\
& p^{2}+q^{2}=1 . \tag{2.22}
\end{align*}
$$

3. Nakamura's conjecture

If we change from coordinates ρ, z to x, y defined by

$$
\begin{align*}
& \rho=\sqrt{\left(x^{2}-1\right)\left(1-y^{2}\right)} \tag{3.1}\\
& z=x y \tag{3.2}
\end{align*}
$$

then Nakamura's conjecture is

$$
\begin{align*}
& \xi_{n}=\frac{U_{11}^{(n)}}{U_{n}} \tag{3.3}\\
& U_{n}=\left|u_{r s}\right|_{n} \tag{3.4}\\
& U_{n}^{(11)}=\text { cofactor of } u_{11} \text { in } U_{n} \tag{3.5}\\
& u_{r s}=L_{+}^{r-1} L_{-}^{s-1} \phi \tag{3.6}\\
& L_{ \pm}=\left(1-x^{2}\right) \frac{\partial}{\partial x} \pm\left(1-y^{2}\right) \frac{\partial}{\partial y} \tag{3.7}\\
& \phi=p x+\mathrm{i} q y \tag{3.8}\\
& p^{2}+q^{2}=1 \tag{3.9}
\end{align*}
$$

Let

$$
\begin{align*}
f_{m} & =\theta^{m} x \quad m \geqslant 1 \quad \theta=\left(1-x^{2}\right) \frac{\mathrm{d}}{\mathrm{~d} x} \tag{3.10}\\
& =x \quad m=0 . \tag{3.11}
\end{align*}
$$

Then

$$
L_{-} \phi=p f_{1}(x)-\mathrm{i} q f_{1}(y) \quad L_{-}^{2} \phi=p f_{2}(x)+\mathrm{i} q f_{2}(y)
$$

Generally then $L_{-}^{s-1}=p f_{s-1}(x)+\mathrm{i} q(-1)^{s-1} f_{s-1}(y)$

$$
\begin{equation*}
\therefore u_{r s}=L_{+}^{r-1} L_{-}^{s-1} \phi=p f_{r+s-2}(x)+\mathrm{i} q(-1)^{s-1} f_{r+s-2}(y) . \tag{3.12}
\end{equation*}
$$

It is shown in appendix A. 2 for $n=1,2,3$ that our ξ_{n} agrees with (3.3) and (3.12), thus proving Nakamura's conjecture for $n=1,2,3$. It is also shown in appendix A. 3 that if Nakamura's conjecture is correct then it satisfies the necessary and sufficient conditions for it to be the Tomimatsu-Sato class of solutions.

In order to prove the conjecture generally it would be necessary to generalize the matrices A and B of appendix A.2.

Acknowledgment

I wish to thank Barry Martin [7] who has checked all of the formulae in appendix A. 2 using MAPLE.

Appendix

A.1.

Theorem 1. Let $X=\left(x_{r s}\right), Y=\left(y_{r s}\right)$ and $Z=\left(z_{r s}\right)$ be invertible square matrices of order n.
Then if $W=X Y Z$

$$
y^{r s}=\sum_{\kappa=1}^{n} \sum_{m=1}^{n} x_{\kappa r} \omega^{\kappa m} z_{s m}
$$

where

$$
\begin{aligned}
& y^{r s}=\frac{Y_{r s}}{|Y|} \quad \omega^{r s}=\frac{W_{r s}}{|W|} \\
& Y_{r s}=\text { cofactor of } y_{r s} \text { in } Y \\
& W_{r s}=\text { cofactor of } \omega_{r s} \text { in } W
\end{aligned}
$$

In particular if

$$
\begin{array}{llll}
\text { (a) } & x_{r r}=1 & x_{r s}=0 & r<s \\
& z_{r r}=1 & z_{r s}=0 & s<r
\end{array}
$$

then

$$
Y_{n n}=W_{n n}
$$

(b) $x_{r 1}=\delta_{1 r} \quad z_{1 s}=\delta_{1 s}$

$$
\left(\delta_{r s}=1 \quad r=s \quad \delta_{r s}=0 \quad r \neq s\right)
$$

then

$$
y^{11}=\omega^{11}
$$

Proof. Since

$$
W=X Y Z
$$

taking the inverse

$$
W^{-1}=Z^{-1} Y^{-1} X^{-1}
$$

$$
\therefore Y^{-1}=Z W^{-1} X
$$

$$
\therefore\left(Y^{-1}\right)^{T}=X^{T}\left(W^{-1}\right)^{T} Z^{T}
$$

$$
\therefore y^{r s}=\sum_{\kappa=1}^{n} \sum_{m=1}^{n} x_{\kappa r} \omega^{\kappa m} z_{s m}
$$

(a) $y^{n n}=\sum_{k=1}^{n} \sum_{m=1}^{n} x_{\kappa n} \omega^{\kappa m} z_{n m}$

$$
=x_{n n} \omega^{n n} z_{n n}
$$

$$
=\omega^{n n}
$$

Also

$$
|X|=|Y|=1 \quad \therefore Y_{n n}=W_{n n}
$$

(b) $y^{11}=\sum_{\kappa=1}^{n} \sum_{m=1}^{n} x_{\kappa 1} \omega^{\kappa m} z_{1 m}$

$$
=x_{11} \omega^{11} z_{11}
$$

$$
=\omega^{11}
$$

Let

$$
R_{n}(a)=\left(\alpha_{r s}(a)\right)_{n \times n}
$$

where

$$
\begin{aligned}
\alpha_{r s}(a) & =\binom{r-1}{s-1} a^{r-s} \quad 1 \leqslant s \leqslant r \\
& =0 \quad r<s .
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{det} E_{n} & =\operatorname{det}\left(R_{n}(a) E_{n}\left(R_{n}(b)\right)^{T}\right) \\
& =\operatorname{det}\left(\beta_{r s}\right)_{n \times n}
\end{aligned}
$$

where

$$
\beta_{r s}=\sum_{\kappa=1}^{r} \sum_{m=1}^{s}\binom{r-1}{\kappa-1}\binom{s-1}{m-1} a^{r-\kappa} b^{s-m}\left(v_{\kappa m}^{(1)} \mathrm{e}^{\mathrm{i} \theta}-v_{\kappa m}^{(2)} \mathrm{e}^{-\mathrm{i} \theta}\right) .
$$

But

$$
\begin{aligned}
& \sum_{\kappa=1}^{r} \sum_{m=1}^{s}\binom{r-1}{\kappa}\binom{s-1}{m-1} a^{r-\kappa} b^{s-m} v_{\kappa m}^{(\alpha)} \\
&=\frac{1}{2 \pi \mathrm{i}} \int_{C_{\alpha}} \frac{(\omega+z+a)^{r-1}(\omega+z+b)^{s-1} F(\omega)}{(\omega-1)^{n}(\omega+1)^{n}} \mathrm{~d} \omega \\
&=\frac{1}{2 \pi \mathrm{i}} \int_{C_{\alpha}} \frac{F(\omega)}{(\omega-1)^{n-r+1}(\omega+1)^{n-s+1}} \mathrm{~d} \omega
\end{aligned}
$$

choosing

$$
\begin{aligned}
& a=-1-z \quad b=1-z \\
& \therefore \beta_{r s}=d_{(n-r+1)(n-s+1)}
\end{aligned}
$$

where

$$
\begin{aligned}
& d_{r s}=\gamma_{r s}^{(1)} \mathrm{e}^{\mathrm{i} \theta}-\gamma_{r s}^{(2)} \mathrm{e}^{-\mathrm{i} \theta} \\
& \begin{aligned}
\gamma_{r s}^{(\alpha)} & =\frac{1}{2 \pi \mathrm{i}} \int_{C_{\alpha}} \frac{F(\omega)}{(\omega-1)^{r}(\omega+1)^{s}} \mathrm{~d} \omega \\
\operatorname{det} E_{n} & =\left|d_{(n-r+1)(n-s+1)}\right|_{n} \\
& =\left|\delta_{(n-r+1) s}\right|_{n}\left|d_{(n-r+1)(n-s+1)}\right|_{n}\left|\delta_{(n-s+1) r}\right|_{n} \\
& =\left|d_{r s}\right|_{n} \\
& =D_{n} .
\end{aligned}
\end{aligned}
$$

By theorem 1(a)

$$
\begin{aligned}
\operatorname{det}\left(E_{n-1}\right) & =\left|d_{(n-r+1)(n-s+1)}\right|_{n-1} \\
& =\left|\delta_{(n-r) s}\right|_{n-1}\left|d_{(n-r+1)(n-s+1)}\right|_{n-1}\left|\delta_{(n-s) r}\right|_{n-1} \\
& =\left|d_{(r+1)(s+1)}\right|_{n-1} \\
& =D_{11}^{(n)} .
\end{aligned}
$$

Now

$$
\begin{aligned}
d_{r s} & =\gamma_{r s}^{(1)} \mathrm{e}^{\mathrm{i} \theta}-\gamma_{r s}^{(2)} \mathrm{e}^{-\mathrm{i} \theta} \\
& =\gamma_{r s}^{(1)}(\cos \theta+\mathrm{i} \sin \theta)-\gamma_{r s}^{(2)}(\cos \theta-\mathrm{i} \sin \theta) \\
& =\gamma^{-}{ }_{r s} \cos \theta+\mathrm{i} \sin \theta \gamma_{r s}^{+} \\
\gamma_{r s}^{-} & =\gamma_{r s}^{(1)}-\gamma_{r s}^{(2)} \\
\gamma_{r s}^{+} & =\gamma_{r s}^{(1)}+\gamma_{r s}^{(2)} .
\end{aligned}
$$

Putting $p=\cos \theta, q=\sin \theta$ so that $p^{2}+q^{2}=1$

$$
d_{r s}=p \gamma_{r s}^{-}+\mathrm{i} q \gamma_{r s}^{+} .
$$

A.2.

Using equations (2.14)-(2.22) inclusive and (3.12) gives

$$
\begin{array}{ll}
d_{11}=u_{11} & d_{12}=\frac{u_{12}}{2(y-x)} \\
d_{21}=\frac{u_{21}}{2(x+y)} & d_{22}=\frac{u_{22}}{4\left(y^{2}-x^{2}\right)} .
\end{array}
$$

In order to obtain these results it is necessary to define

$$
\begin{aligned}
& F(1)=x+y \quad \text { and } \quad F(-1)=x-y . \\
& \therefore \xi_{1}=\frac{U_{11}^{(1)}}{U_{1}} \quad\left(U_{11}^{(1)}=1\right) \\
& \xi_{2}=\frac{U_{11}^{(2)}}{U_{2}}
\end{aligned}
$$

In order to obtain the results for $n=3$ it is necessary to transform the determinant D_{3}.
Let $D=\left(d_{r s}\right)_{3 \times 3}$ and form the matrix product $A D B=\left(d_{r s}^{*}\right)_{3 \times 3}$,
where

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{2(x y+1)}{(x+y)} & 4(x+y)
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \frac{2(-x y+1)}{(x-y)} \\
0 & 0 & 4(y-x)
\end{array}\right] .
$$

This gives

$$
\begin{array}{lll}
d_{11}^{*}=u_{11} & d_{12}^{*}=\frac{u_{12}}{2(y-x)} & d_{13}^{*}=\frac{u_{13}}{2(y-x)} \\
d_{21}^{*}=\frac{u_{21}}{2(x+y)} & d_{22}^{*}=\frac{u_{22}}{4\left(y^{2}-x^{2}\right)} & d_{23}^{*}=\frac{u_{23}}{4\left(y^{2}-x^{2}\right)} \\
d_{31}^{*}=\frac{u_{31}}{2(x+y)} & d_{32}^{*}=\frac{u_{32}}{4\left(y^{2}-x^{2}\right)} & d_{33}^{*}=\frac{u_{33}}{4\left(y^{2}-x^{2}\right)}
\end{array}
$$

\therefore by theorem $1(b)$ we have

$$
\xi_{3}=\frac{D_{11}^{(3)}}{D_{3}}=\frac{D_{11}^{(3) *}}{D_{3}^{*}}=\frac{U_{11}^{(3)}}{U_{3}}
$$

A. 3 .

In the notation of [6] (p 464, equation (8)) the necessary and sufficient condition for a solution to be a member of the Tomimatsu-Sato class is

$$
\begin{equation*}
F_{x} F_{y}+J_{x} J_{y}=0 \tag{A.3.1}
\end{equation*}
$$

where suffix x denotes the partial differentiation with respect to x, and suffix y denotes the partial differentiation with respect to y. Where $\xi=J+\mathrm{i} F$.

In terms of ξ (A.3.1) reads

$$
\begin{equation*}
\xi_{x} \bar{\xi}_{y}+\bar{\xi}_{x} \xi_{y}=0 \tag{A.3.2}
\end{equation*}
$$

where the bar denotes complex conjugate.
(A.3.2) can be rewritten as

$$
\begin{equation*}
L_{+} \xi L_{+} \bar{\xi}-L_{-} \xi L_{-} \bar{\xi}=0 . \tag{A.3.3}
\end{equation*}
$$

Theorem 2. Let

$$
\begin{align*}
& \xi=\frac{U_{11}^{(n)}}{U_{n}} \tag{A.3.4}\\
& U_{n}=\left|u_{r s}\right|_{n} \tag{A.3.5}\\
& U_{11}^{(1)}=\text { cofactor of } u_{11} \text { in } U_{n} \tag{A.3.6}\\
& u_{r s}=p f_{r+s-2}(x)+\mathrm{i} q(-1)^{s-1} f_{r+s-2}(y) \tag{A.3.7}
\end{align*}
$$

then

$$
\begin{equation*}
U_{n}^{2} L_{+} \xi=\bar{U}_{n}^{2} L_{-} \bar{\xi} \tag{A.3.8}
\end{equation*}
$$

Proof. From (A.3.7)

$$
\begin{array}{ll}
u_{r(s+2)}=u_{(r+2) s} & \\
\bar{u}_{r s}=u_{(r+1)(s-1)} & s \geqslant 2 \\
\bar{u}_{r s}=u_{(r-1)(s+1)} & r \geqslant 2 \tag{A.3.11}
\end{array}
$$

From (A.3.10) or (A.3.11)

$$
\begin{align*}
& \bar{U}_{1 n}^{(n)}=U_{n 1}^{(n)} \tag{A.3.12}\\
& \therefore \bar{U}_{(n+1) 1}^{(n+1)}=U_{1(n+1)}^{(n+1)} . \tag{A.3.13}
\end{align*}
$$

Now

$$
\begin{aligned}
U_{n}^{2} L_{+} \xi & =-\sum_{r=1}^{n} \sum_{s=1}^{n} L_{+}\left(u_{r s}\right) U_{1 s}^{(n)} U_{r 1}^{(n)} \\
& =-\sum_{r=1}^{n} U_{r 1}^{(n)} \sum_{s=1}^{n} u_{(r+1) s} U_{1 s}^{(n)} \\
& =-U_{n 1}^{(n)} \sum_{s=1}^{n} u_{(n+1) s} U_{1 s}^{(n)} \\
= & U_{n 1}^{(n)} U_{1(n+1)}^{(n+1)} \\
U_{n}^{2} L_{-} \xi & =-\sum_{r=1}^{n} \sum_{s=1}^{n} L_{-}\left(u_{r s}\right) U_{1 s}^{(n)} U_{r 1}^{(n)} \\
& =-\sum_{s=1}^{n} U_{1 s}^{(n)} \sum_{r=1}^{n} u_{r(s+1)} U_{r 1}^{(n)} \\
= & -U_{1 n}^{(n)} \sum_{s=1}^{n} u_{r(n+1)} U_{r 1}^{(n)} \\
= & U_{1 n}^{(n)} U_{(n+1) 1}^{(n+1)} . \\
\therefore \bar{U}_{n}^{2} L-\bar{\xi} & =\bar{U}_{1 n}^{(n)} U_{(n+1) 1}^{(n+1)} \\
& =U_{n 1}^{(n)} U_{1(n+1)}^{(n+1)} \\
& =U_{n}^{2} L_{+} \xi .
\end{aligned}
$$

From theorem 2

$$
\frac{L_{-} \bar{\xi}}{L_{+} \xi}=\frac{U_{n}^{2}}{\bar{U}_{n}^{2}}
$$

Taking complex conjugates gives

$$
\left.\begin{array}{rl}
\frac{L_{-} \xi}{L_{+} \bar{\xi}} & =\frac{\bar{U}_{n}^{2}}{U_{n}^{2}} \\
& =\frac{L_{+} \xi}{L_{-} \bar{\xi}}
\end{array}\right] . \quad \begin{aligned}
& L_{+} \xi L_{+} \bar{\xi}-L_{-} \xi L_{-} \bar{\xi}=0
\end{aligned}
$$

which is condition (A.3.3). Thus if Nakamura's conjecture is correct then it is a member of the Tomimatsu-Sato class.

References

[1] Kramer D and Neugebauer D 1980 Phys. Lett. A 75259
[2] Tomimatsu A and Sato H 1973 Prog. Theor. 5095
[3] Vein R and Dale P 1999 Determinants and Their Applications in Mathematical Physics (New York: Spinger)
[4] Nakamura A 1993 J. Phys. Soc. Japan 62368
[5] Fukuyama T, Kamimura K and Yu S 1995 J. Phys. Soc. Japan 643201
[6] Dale P 1978 Proc. R. Soc. A 362463
[7] Martin B 92 Halton Road, Sutton Coldfield B73 6NX UK

